
Tipical Charlie
(Tips and Resources from a Veteran CFML Developer)

by Charlie Arehart

How can I call thee (CFC)? Let me count the ways1

You may be surprised by the number of ways you can call a CFC and its methods. You should

understand the di�erences, as each approach has its place. There are three ways to instantiate

a CFC and/or call a method, and then there are also three ways of passing in arguments to a

method.

The three approaches for instantiating an object and invoking its methods are either the CFINVOKE

or CFOBJECT tags, or the function-based equivalent to CFOBJECT, CREATEOBJECT(). The ways of passing

arguments in depend on the calling approach and include approaches for naming arguments in

the call, passing in a structure, naming them positionally, or naming them in subtags.

Ways to Invoke Methods

CFINVOKE: creates an instance and invokes a single method, one time.

Many developers desiring to “invoke” a CFC method will naturally gravitate toward the CFINVOKE

tag. It works very simply:

<cfinvoke component=”CFCname” method=”methodname”
returnvariable=”returnvarname”>

You name a CFC (without the .cfc extension) and a desired method (and optionally arguments,

discussed later), and you get back its result in the variable named in ReturnVariable. It certainly

works, but it has a couple of drawbacks. You can only invoke one method in the CFC per request.

If you intend to call another method, you have to issue another invoke with the overhead that

entails, because there is no stored reference to the object. Further, without a stored reference, you

can’t place that instance in a shared scope variable for later reuse.

Both of these problems are solved by CFOBJECT or its sibling, CREATEOBJECT(), which will also a�ord a

new option for using CFINVOKE, as discussed at the end of the next section.

CFOBJECT/CREATEOBJECT(): creates an instance of the object as a ColdFusion variable with a speci!c

name (named instance) and optionally invokes a method at the same time, or allows you to

invoke a method later.

Developers who come from a more object-based background may feel more comfortable using

CFOBJECT or CREATEOBJECT(). These alternatives feel more like you are creating an instance of an

object, for those familiar with that concept from other languages:

<cfobject name=”instancename” component=”CFCname”>

As with CFINVOKE, you do not specify .cfc in the CFCname.

1 Of course, I’m making a play on the classic line from an Elizabeth Barrett Browning sonnet that starts,

“How do I love thee, let me count the ways.”

The Fusion Authority Quarterly Update Columns 115

ColdFusion and BlueDragon both search for the !le in a range of prede!ned locations, including

the current directory, the webroot, the customtags directory, and mappings directories, but that

is not the subject of this article.

You could then invoke a method on the CFC any number of ways, including a simple CFSET tag:

<cfset returnvariable = instancename.methodname()>

The equivalent syntax when using the function, CREATEOBJECT(), might be the following:

<cfscript>
 instancename = createobject(“component”,”cfcname”);
 returnvariable = instancename.methodname();

</cfscript>

For those not familiar with CFSCRIPT, note that you MUST use semicolons to end each statement. But

you don’t need to use this function only in CFSCRIPT. In fact, you don’t need to instantiate the CFC and

then call the method. You can do both at once. Here’s an example of doing it all in a CFSET:

<cfset returnvariable = createobject(“component”,”cfcname”).methodname()>

Note, though, that this approach of combining the instantiation and method invocation again

leaves you with no stored reference to reuse for later purposes, just like CFINVOKE.

However, note that if you do create an instance as discussed in the !rst three samples of this

section, you could also use that instance name to invoke a component method using CFINVOKE,

replacing the component=”CFCNAME” with component=”#instancename#”. For example:

<cfinvoke component=”#instancename#” method=”methodname”>

Ways to Pass Arguments
There are also several ways to pass in arguments, depending on which of the two approaches you

are using (CFINVOKE vs. CFOBJECT/CREATEOBJECT).

Passing Arguments on CFINVOKE
For CFINVOKE, you can pass in arguments as additional attributes to the CFINVOKE tag. Extending the

example above, I could pass in FirstName=”Charlie”:

<cfinvoke component=”CFCname” method=”methodname” FirstName=”charlie”
returnvariable=”returnvarname”>

There’s no signi!cance to the order of the attributes, and you can name as many as you want.

Of course, you can also provide a variable for the value of one of the attributes. The type of data

passed in is controlled by the argument’s type (if any) as de!ned inside the CFC method. Any

valid CFML datatype can be passed in this way.

If you do end up passing more than a few arguments, you may want to reconsider placing them

all in the tag itself. All of these extra attributes can get di"cult to read and maintain. Fortunately,

CFML o�ers two alternatives, one of which is shared with the CFOBJECT/CREATEOBJECT approach.

116 Columns The Fusion Authority Quarterly Update

The !rst is the ArgumentCollection, which can point to a structure, whose keys are the names

of the arguments to be passed. If I wanted to pass in !rstname and lastname to a CFC method, I

could create the structure as:

<cfset myargs=structnew()>
<cfset myargs.firstname=”charlie”>
<cfset myargs.lastname=”arehart”>

You can call the structure anything you want, and it can have any number of elements. The order

is not signi!cant, and their values can be variables. I could pass the structure to my method in the

CFINVOKE using the special ARGUMENTCOLLECTION attribute. It’s a keyword in CFML.

<cfinvoke component=”CFCname” method=”methodname” argumentcollection=”#myargs#”

 returnvariable=”returnvarname”>

Yet another approach, speci!c to CFINVOKE, is to use the CFINVOKEARGUMENT subtag, where you include

one for each desired argument to be passed to the method. An example would be:

<cfinvoke component=”CFCname” method=”methodname” returnvariable=”returnvarname”>

 <cfinvokeargument name=”firstname” value=”charlie”>

 <cfinvokeargument name=”lastname” value=”arehart”>

</cfinvoke>

Again, you can have as many as you want, the order is not signi!cant, and the values can be

variables.

Both of these approaches give you more programmatic control over what arguments and values

are passed to the method. You can use IF statements or other logic to decide what arguments

to include, both surrounding the CFINVOKEARGUMENT tags and when building the structure for the

ARGUMENTCOLLECTION.

Passing Arguments to cfobject/CreateObject-based Methods
When calling a method in a CFC that’s been instantiated with CFOBJECT or CREATEOBJECT(), you have

similar but slightly di�erent options. First, as with CFINVOKE, you can choose to name the intended

arguments in the method call as argument=value pairs, but you do this within the method invo-

cation, like so:

<cfset returnvariable = instancename.

methodname(firstname=”Charlie”,lastname=”arehart”)>

As with passing arguments in CFINVOKE, their order doesn’t matter, you can have as many as you

need, and the values can be variables.

There’s yet another approach which may appeal to some developers. You can also just provide

the values without naming the arguments:

<cfset returnvariable = instancename.methodname(“Charlie”,”arehart”)>

Now, this may scare some of you. How does the system know which argument is which? Well,

they are passed in positionally, meaning that if any CFARGUMENT tags are de!ned in the CFC

The Fusion Authority Quarterly Update Columns 117

method, their values are !lled in the order that the argument values are presented. If there are no

CFARGUMENT tags, or if more values are presented than such tags exist, then the values are placed

sequentially into the arguments array within the method, and can be accessed by referring to the

element number in the array.

Finally, as with CFINVOKE, you can also pass in arguments using the ARGUMENTCOLLECTION. Assuming we

had de!ned the MYARGS structure as in the previous section, we could call the method as:

<cfset returnvariable = instancename.methodname(argumentcollection=myargs)>

All these approaches apply equally to invocation of web services as well as CFCs, though there

are some quirks: optional arguments in a web service must be speci!ed unless the new CFMX 7

Omit=”yes” attribute is used on the CFINVOKEARGUMENT. Also, if arguments named username or pass-

word are passed to the invocation of a web service method, ColdFusion presumes they are used

for passing authentication to the Web Service.

With all the variety of options available, it’s incumbent upon the CFML developer to know the

alternatives and use the best choice for a given job. I hope this brief introduction will help you in

that decision.

A veteran CFML developer since 1997, Charlie Arehart is a longtime contributor to the commu-

nity and recently became a member of the Adobe ACE program. Many know he served as tech

editor of the CFDJ until 2003 and was co-author of the CFMX Bible. A certi!ed Advanced CF

Developer and Instructor for CF 4/5/MX, he’s frequently invited to speak to developer confer-

ences and user groups worldwide. Formerly CTO of New Atlanta (BlueDragon), he is now an inde-

pendent contractor and still lives in Alpharetta, GA, where he is president of the Atlanta CFUG.

118 Columns The Fusion Authority Quarterly Update

