
Understanding, Improving and
Resolving Issues with Database

Prepared Statements

What really happens when we
do/don't use cfqueryparam?

Charlie Arehart, Independent Consultant charlie@carehart.org

Topics

Thinking through DB request processing
•Understanding DB query plan creation
•Understanding DB prepared statements
• Influence of CFQUERYPARAM
•Options for query plan/statement cache

Monitoring & Performance implications
Comparison of SQL Server & MySQL
•Most applies to all DBMSs and versions
•Will explain differences, where I know them

About Charlie Arehart
Independent consultant since April 2006
10 yrs CF experience (25 in Enterprise IT)
• Member, Adobe Community Experts
• Certified Adv CF Developer (4 - 7), Cert. Adobe Instructor
• Frequent speaker to user groups, conferences worldwide
• Contributor to Ben Forta’s CF8 books, past ColdFusion MX Bible
• Run the Online ColdFusion Meetup (coldfusionmeetup.com)
• Living in Alpharetta, Georgia (north of Atlanta)

Web home at www.carehart.org
• Hosts 175+ blog entries, 50+ articles, 70+ presentations, more
• UGTV: recordings of presentations by over 100 CFUG speakers
• AskCharlie: per-minute telephone & web-based CF support

Thinking through DB request processing

ColdFusion Database

A Simple Perspective

Of course, it’s more than “just a database”

Thinking through DB request processing

DB Driver
(JDBC, ODBC)

ColdFusion DBMS

Database

(SQL Server, Oracle, MySQL, etc.)

Connection Pool

DB Page Buffers

A More Evolved Understanding

Create
Query Plan

(Query Plan Cache)

(Prepared Stmt Cache)

CFQUERYPARAM can affect the last three

Understanding DB query plan creation
When request reaches DBMS, it needs to
calculate best way to execute the SQL
• Influenced by indexing, row count, value distribution

within a column, and more
This takes time, separate from getting the data
• Is good that DBMS does this for us
• But we can influence how much it does this

Let’s see simple query in action
• Using SQL Server Profiler

• Stored Procedures event (yes, even for dynamic SQL)
• RPC:Starting/Completed; SQL:StmtStarting/Completed

• Performance event
• Showplan All/XML for Query Compile,

• Same concept applies in Oracle, MySQL, etc.

a

Understanding DB prepared statements
DB creates new query plan for each unique SQL statement
• Using prepared statements, we can cause DBMS to reuse previous

query plan
• If a given statement has variable values
• Also reused by multiple users, if same SQL statement

• Could save significant time (for query compilation)
• Can be requested in CFML code via CFQUERYPARAM
• Can also be performed automatically by DBMS (more later)

Let’s see it in action
Notes
• Concern with SELECT * and CFQUERYPARAM

• DB driver stores metadata reflecting columns in play at plan creation
• If you add columns after that, CFQUERY could fail

• Can be done for more than just SELECT
• Just as useful for INSERT, UPDATE, DELETE

• If given SQL statement executed often
• But varies by some input parameter

• Offer security benefits as well
• Can provide performance benefit (not always, as discussed later)

b,c

Performance implication of prepared
statements

Could save significant time (for query
compilation)
Could also affect memory
• Since you’re reusing query plans for varying

arguments

Prepared statements also known as
•Using “bind variables”, parameterized queries
•Opposite of “direct” or “immediate” execution

b,c

DB query plan caching

Some DBMS’ saves query plans for reuse
•Called variously “plan cache”, “procedure

cache”, “statement cache”
• All statements, whether using prepared

statements or not, are cached for reuse
• Like any cache, want high ratio of hits/misses

Let’s see it in action (see next slide)

d,e

DB query plan caching in SQL Server
Can view effort for each query in SQL Profiler
• Stored Procedures event (again, even for dynamic

SQL)
• SP:CacheHit/CacheInsert/CacheMiss/CacheRemove

Can view aggregate data in new DMVs in 2k5
• sys.dm_exec_cached_plans
• sys.dm_exec_sql_text

Also available data in PerfMon
• SQLServer:PlanCache event

• “Cache Hit Ratio” for “SQL Plans” instance
• “Cache Object Counts”/”Cache Objects in use”

Can clear cache with DBCC FREEPROCCACHE

d,e

SQL Server Profiler w/out cfqueryparam
First call when cache cleared
• SP:CacheMiss (@1 varchar(8000))
SELECT * FROM [person].[address] WHERE
[city]=@1

• SP:CacheInsert
select * from person.address
where city='Dallas'

• SQL:BatchCompleted
select * from person.address where
city='Dallas'

Second call
• SP:CacheHit
select * from person.address where
city='Dallas'

• SQL:BatchCompleted
select * from person.address where
city='Dallas'

SQL Server Profiler w/ cfqueryparam
First call when cache cleared
• SP:CacheInsert (@P1 varchar(8000))
select * from person.address where city=@P1

• SP:StmtCompleted
select * from person.address where city=@P1

• RPC:Completedexec sp_execute 1,'Dallas'
• Exec Prepared SQL

Second call
• SP:CacheHit (@P1 varchar(8000))
select * from person.address where city=@P1

• SP:StmtCompleted
select * from person.address where city=@P1

• RPC:Completedexec sp_execute 1,'Dallas'
• Exec Prepared SQL

Performance implication of query plan
caching

The query plan cache requires memory
• So using it most effectively can be important

Failure to use prepared statements (CFQUERYPARAM) means
unique entries for statements varying by some arg
• Prepared statements would reuse one cached statement

Regarding multiple users (different logins)
• if no schema used on tablename, SQL Server will not reuse same plan

• since different users could have different default schemas
• “Select xxx from employees” versus “select * from dbo.employees”

• Could cause much larger volume of query plan creation
DMV analysis can help address evaluating performance
• For determining which so parameterize, find SQL statements that look

alike
• But vary by some one parameter

• For multiple user/no schema problem, will find entries with identical
sql

f,g,h

SQL Server 2k5 DMV SQL
SQL to view top 100 used compiled plans
SELECT TOP 100 objtype, usecounts, size_in_bytes, cacheobjtype,
REPLACE (REPLACE ([text], CHAR(13), ' '), CHAR(10), ' ') AS

sql_text
FROM sys.dm_exec_cached_plans AS p
CROSS APPLY sys.dm_exec_sql_text (p.plan_handle)
WHERE p.objtype in ('Proc','Prepared','Adhoc') AND cacheobjtype =

'Compiled Plan'
ORDER BY objtype, usecounts DESC

I’m hiding all by those I’m running with
additional WHERE clauses
and REPLACE (REPLACE ([text], CHAR(13), ' '), CHAR(10), ' ') like

'%select *%'
and REPLACE (REPLACE ([text], CHAR(13), ' '), CHAR(10), ' ') not

like '%SELECT TOP 100%'

SQL Server 2k5 DMV SQL
SQL to get CPU times and memory for those
SELECT TOP 10 usecounts, size_in_bytes, cacheobjtype,
SUM (total_worker_time / 1000) AS total_cpu_time_in_ms,
SUM (total_physical_reads) AS total_physical_reads,
SUM (total_logical_reads) AS total_logical_reads,
SUM (total_logical_writes) AS total_logical_writes,
REPLACE (REPLACE ([text], CHAR(13), ' '), CHAR(10), ' ') AS

sql_text
FROM sys.dm_exec_cached_plans AS p
INNER JOIN sys.dm_exec_query_stats stat ON p.plan_handle =

stat.plan_handle
CROSS APPLY sys.dm_exec_sql_text (p.plan_handle)
WHERE p.objtype in ('Proc','Prepared','Adhoc') AND cacheobjtype =

'Compiled Plan'
GROUP BY usecounts, size_in_bytes, cacheobjtype, [text]
ORDER BY usecounts DESC

Again, I’m hiding all by those I’m running with
the same additional WHERE clauses

Thinking through DB request processing

DB Driver
(JDBC, ODBC)

ColdFusion DBMS

Database

(SQL Server, Oracle, MySQL, etc.)

Connection Pool

DB Page Buffers

Adding query plan caching

Create
Query Plan

(Query Plan Cache)

DB driver prepared statement caching

Some DB drivers in CFMX offer
“prepared statement caching”
Not exposed in Admin DSN page
•But settable on connection string

Have not explored this fully

MySQL Driver Prepared Statement
Cache

Prepared statement cache in connector/j
• Not enabled by default
• See

http://dev.mysql.com/doc/refman/5.0/en/con
nector-j-reference-configuration-
properties.html

• See also many other references to “prepared”
there

Thinking through DB request processing

DB Driver
(JDBC, ODBC)

ColdFusion DBMS

Database

(SQL Server, Oracle, MySQL, etc.)

Connection Pool

DB Page Buffers

Adding prepared statement caching

Create
Query Plan

(Query Plan Cache)

(Prepared Stmt Cache)

Observations on MySQL
Support for prepared statements new as of 4.1
• Prior to that, could/would be emulated by DB driver

One discussion explains benefits
• (http://dev.mysql.com/doc/refman/5.0/en/connector-net-using-

prepared.html)
• Prepared execution is faster than direct execution for statements

executed more than once, primarily because the query is parsed only
once. In the case of direct execution, the query is parsed every time it
is executed. Prepared execution also can provide a reduction of
network traffic because for each execution of the prepared statement,
it is necessary only to send the data for the parameters.

• Another advantage of prepared statements is that it uses a binary
protocol that makes data transfer between client and server more
efficient

Monitoring
• See Com_stmt_execute to Com_stmt_prepare ratio

Can view prepared statements in the “general query log”
• Enable as discussed in docs, or using log in my.ini
• View in “mysql administrator”, under “server logs”

MySQL Gotchas
Some gotchas (http://dev.mysql.com/doc/refman/5.0/en/c-api-
prepared-statement-problems.html)
• Prepared statements not supported if using MySQL’s query results

cache feature
• Fixed in 5.1.17: http://bugs.mysql.com/bug.php?id=735

• Prepared statements do not support multi-statements (that is, multiple
statements within a single string separated by ‘;’ characters)
• This also means that prepared statements cannot invoke stored procedures

that return result sets, because prepared statements do not support
multiple result sets.

Others from elsewhere
• Use of prepared statements involves extra round-trip between driver

and DBMS on first execution of statement
• Prepare returns an identified to client, which then executes it (optionally

filling in bind parms)
• http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html

• There is no prepared statement cache
• “You can allocate multiple copies of same prepared statement and they will

each use separate structures on the server. It does not matter if you do it
from same connection or multiple connections.”

• http://www.mysqlperformanceblog.com/2006/08/02/mysql-prepared-
statements/

Observations on using SQL 2005
features

If SQL offered for 2k5 fails with
• “incorrect syntax near '.'”
• Check the compat level of the DB

•sp_dbcmptlevel dbname
• To change it to 2k5 level

•sp_dbcmptlevel dbname, 90

Permissions needed to run DMV SQL
from within CF
• In sql server, add permissions for the user

used in the CF DSN
•Sorry, can’t recall what I changed

When Prepared Statements Can Hurt
Query plan may be created for one value that
does not work well for other values
• Obvious example is NULL
• A query plan created for SELECT … WHERE col=null

would not use index
• So could force tablescan

• Subsequent query using “real” value could end up
using that query plan…BAD!

• Could happen for other than null (value with low
distribution across records vs value with high)

SQL Server offers some solutions to help
• Can offer WITH RECOMPILE hint
• Can also create plan guides and template plan guides
• Beyond the scope of this talk to discuss in details

Sql server driver SPY log
When ARE using CFQUERYPARAM

• Connection[12].isClosed()
• OK (false)

• Connection[12].getAutoCommit()
• OK (true)

• Connection[12].getMetaData()
• OK (DatabaseMetaData[24])

• DatabaseMetaData[24].supportsMultipleResultSets()
• OK (true)

• DatabaseMetaData[24].supportsGetGeneratedKeys()
• OK (true)

• Connection[12].prepareStatement(String sql, int autoGeneratedKeys)
• sql = select * from person.address
• where city=?
• autoGeneratedKeys = 1
• OK (PreparedStatement[6])

• PreparedStatement[6].setMaxFieldSize(int max)
• max = 64000
• OK

• PreparedStatement[6].setObject(int parameterIndex, Object x, int targetSqlType)
• parameterIndex = 1
• x = Dallas
• targetSqlType = 12
• OK

• PreparedStatement[6].execute()
• OK (true)

• PreparedStatement[6].getUpdateCount()
• OK (-1)

• PreparedStatement[6].getResultSet()
• OK (ResultSet[6])

Sql Server driver SPY log
When NOT using CFQUERYPARAM

• Connection[16].isClosed()
• OK (false)

• Connection[16].getAutoCommit()
• OK (true)

• Connection[16].getMetaData()
• OK (DatabaseMetaData[32])

• DatabaseMetaData[32].supportsMultipleResultSets()
• OK (true)

• DatabaseMetaData[32].supportsGetGeneratedKeys()
• OK (true)

• Connection[16].createStatement()
• OK (Statement[2])

• Statement[2].setMaxFieldSize(int max)
• max = 64000
• OK

• Statement[2].execute(String sql, int autoGeneratedKeys)
• sql = select * from person.address
•
• where city='Dallas'
• autoGeneratedKeys = 1
• OK (true)

• Statement[2].getUpdateCount()
• OK (-1)

• Statement[2].getResultSet()
• OK (ResultSet[8])

Summary

Thought through DB request processing
Reviewed
•DB query plan creation
•DB prepared statements
• Influence of CFQUERYPARAM
•Options for query plan/statement cache

Discussed performance implications
Compared of SQL Server & MySQL

Questions on presentation
Charlie Arehart
• charlie@carehart.org

I’d really appreciate your feedback
• http://carehart.org/feedback/

Also available for setup and implementation
consulting
• Also other developer productivity coaching, system

admin and tuning support, and more
• Remote or on-site

New Per-minute Phone/Web support
• http://carehart.org/askcharlie/

