
CHAPTER 45
Using the
Debugger

IN nns CHAPTER

Overview E72

Configuring ColdFusion and the Debugger E73

Exploring the Debugger E80

ColdFusion Builder offers a powerful new developer tool in its debugger, an interactive step debug
ger that allows CFML developers to walk through the execution of their code, observing what lines
of code it executes, what other CFML files (include files, custom tags, or CFCs) it executes, the
value of all variables (optionally in all scopes) at a given point during execution, and much more.
You can even change the value of variables on the fly within the debugger, such as to alter the run
time flow of execution of your code.

More than just watching the code that you run yourself, the debugger can watch the execution of
any request (including requests from other users running code on your server), and also any CFML
however it's requested, including calls from Ajax or Flex clients or from other servers issuing Web

service requests or CFHTTP equivalents.

There are also other kinds of requests that can happen within ColdFusion through no tradi-
tional browser: scheduled tasks, requests made via the ColdFusion gateways, and events in the
Appl ication .etc file, such as onSessionEnd and onApplicationEnd. With all these kinds of requests,
there often is no browser to which you can easily send back traditional debugging statements.

And even with traditional browser requests, there are still times when CFML code can't display any
output, such as when output has been disabled in a CFC or method, or within a CFSILENT tag pair,
and so on.

These are just some of the scenarios in which a debugger becomes so valuable, where you use a tool
to watch the execution of some code while it runs live, regardless of how it was requested by a user.
Of course, there is all the requisite security to ensure that the debugger is used only by authorized
developers.

The debugger is built into ColdFusion Builder, which has been introduced in other chapters in this
series, especially Chapter 3, "Introducing ColdFusion Builder," in Adobe ColdFusion 9 Web Applica

tirm Construction Kit, Volume 1: Getting Started. Whether you're new to debugging or feel lukewarm
about the concept, this chapter will help you feel comfortable and confident using the debugger as a

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E72 CHAPTER 45 USING THE DEBUGGER

tool in your CFML developer toolkit. It will introduce debugging and the debugger, how to install
and configure it, and how to use it.

The initial discussion of understanding, installing, and configuring the debugger (and ColdFusion)
may seem a bit tedious, but it's generally a one-time effort. Once you configure the debugger, you
will be able to use it quite easily and quickly.

Overview
We start with an overview of traditional and step debugging.

Traditional Forms of Debugging
As developers, we spend most of our day debugging code: whether it's new code we're writing, old
code we're updating, or someone else's code we've inherited. When trying to resolve a problem in
a given CFML template or CFC, you often need to understand the flow and function of the code,

and to do that you have a couple choices.

First, you can try to just statically review the source code, relying on your skills at reading and
interpreting the code to determine what it should be doing, eye-balling potentially many lines of
code, and guessing at or tracking manually what the values of various variables will be at any given
point. This can be a complicated effort, but some developers are especially well suited to the task.

More commonly we instead let ColdFusion just run the page and then we use either of two tech
niques to have it report what's going on in the execution of the code. The ColdFusion debugging
output, which is displayed at the end of a page request (if enabled in the ColdFusion Administra
tor), can show high-level information about that request, including how long it took to run, what
files it called (includes, custom tags, CFCs), what queries it executed (their duration, record count,
SQL, and such), the variables and values in many variable scopes, and much more. This feature
was discussed in Chapter 17, "Debugging and Troubleshooting," in Volume 1.

Still, there are times when either that level of detail is not enough or debugging output is not
enabled (and/or cannot be). In that case most developers will resort to placing CFOUTPUT and CFDUMP

tags strategically in the program code both to depict the flow of control ("What lines of code am I
running?") and to determine the value of variables at a given point. This is a tried and true method,
and for many developers they've known no other alternative.

Introducing Step Debugging
Developers who come from some other progranlliling environments, however, are often surprised to
find CFML developers having onJy these techniques at their disposal. Such developers have often had
the advantage of using a step debugging tool to help them in this very sort of situation. With a step

debugger, a developer can actually observe the lines of code as they are executed, watching each line
begin and end, as well as watching the value of any and all variables in play at that point in the code.

Consider the code fragment in Figure 45.1 (from getfilms.cfm in the source code directory for this
chapter), which depicts some code about to be executed. As we observe the code, we can wonder

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

CoNFIGURJN G CoLnFusmN AND TH.E DEBUGGER E73

whether the first "if" test will be true, and we may wonder what goes on in the listFilms method
that would be called. If we knew the value of the variables being tested, then of course we'd know
which test would be true.

Figure 45.1
Sample CFML code
being debugged.

ows/45/gctfilm~.dm k
I rv 1"1 _ .-. ta ~o-] 1rg ~ •!-•· r.J ',, • • AB •I»

12
13 <c fc.bjecc comp-cn e n t-=" f ilnis " n ame= " f i l ns">

1'!.■ <cfi f i :,Def ined I "•.2rl . actarID" ► a .r~d i:,Numcric (u r l , accorID) >
15 <C!3ec: :C1 lm.sQue r _y = ! llm:3 . lls t.:E'll113 (Ur l . a cto r I D) ;,-

16 <cfel s e>
17 <cf sec fil:msQue ry = films. listFil ns () >
18 </cf i f >-

19
20= <.ciout p ac. que ri= " filmgQuer-y " >

21 t l-!ovieTitle f </ a >
-

22 </cf outpuc>

= El

""

A step debugger could tell us all that information, and more. We could tell the debugger to stop
execution at any given line of code, and while there we could view all the currently defined vari
ables (in any of the scopes we've configured the debugger to show). More important, we could a.sk
the debugger to step through the code, running whatever the next line would be (line 14), and
then step again, in which case we'd run either line 15 or 16, depending on the condition evaluated.
No more guessing!

Beyond that, while observing this code (without a debugger) we may wonder other things: how
did we get to this point in the code? Was this file called as an include file, custom tag, or CFC
method? Did we run an Application.cfm or Application .etc file before getting here?

And of course we may even wonder about the listFilms function itself: What does it do, where is
it defined, and so on. The great news is that we could ask the debugger to step into that method,
and since it's a CFC method in another file, the debugger would find the file, open it, and stop on
the first line of code inside that file. The same would be true if we stepped into included files, calls
to custom tags, and so on.

All mis and more can be discovered with the ColdFusion Builder debugger. Let's look next at how
configure it; then we'll see how to use the debugger to answer the questions just posed.

Configuring Coldfusion and the Debugger
To use the debugger against a given implementation of ColdFusion (8 or 9), you must configure
that ColdFusion server to permit debugging, and then you must configure ColdFusion Builder
itself. We'll cover each of these topics in this section.

NOTE
The debugger works only with Cold Fusion 8 or 9. If you're interested in debugging Cold Fusion 6 or 7 servers, look into Fusion
Debug, a commercial debugger that functions similarly to the ColdFusion Builder debugger and can debug ColdFusion 6 or
higher. For more information,seewww.fusiondebug.com.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E74 CHAPTER 45 USING THE DEBUGGER

Configuring the Coldfusion Administrator
You enable a server to permit debugging by way of settings in the ColdFusion Administrator. T he
setting for the Co1dFusion debugger feature is separate from the traditional debugging output
feature, which is also enabled in the Administrator. There are also important settings on other
Administrator screens.

Enable Debugger Settings

The first and most important settings to enable for debugging are on a page in the Debugging &

Logging section of the Administrator, in a page called Debugger Settings (Figure 45.2).

There, you must select the Allow Line Debugging option and click Submit Changes to enable
debugging against this server. Note that you must restart the server upon enabling (or disabling)
this setting for the it to take effect. (More on this is offered later, in the section "Special Consider
ations for Multiserver Deployment.")

Figure45.2
ColdFusion
Administrator
Debugger
Settings page.

oebugglno & Loc,olng > De-bugger setting■

Enaol.ctwA!lawli11■~~o,;tlor\1o u,.i,.Col!Fu"°'10.wp,Klt!alnmin EdJJ1H SIJl(if)'htQt.-:d0.11at1mum-otlnlW!llll.-dt:~u,>PJ1t1

O,btl9!1lftG~

r11t1111-~-1U11$U■ ~:inep.int.t l"0111~Cokf'utl0(1~ 'l'ouun~a1.1o<opm ro~.w1 •G113~ng-t..mlfll,11-'9'.~. thl,os~lldlynuntefl$111Y~"~
lfo..l.6abugfftet-s~l,fflall.lQC,d~llyllflc'll,16ebug1,Ms>Ml9t.la11H.

S10J1 Do!Np:3- i Jw.a,t~ s-1

OK,li:111ttult<-,0111""~lO\lpd~t~s«v.ql.

W hile on that Debugger Settings page, notice the available Debugger Port setting, which you
need not change unless the port is one that's unavailable on your server.

WARNING
If you're debugging a server that is remote to you, beware of the follo.ving issue. The debugging feature on the server actually
listens for commands (from Cold Fusion Builder) on a port separate from the one specihed in the aforementioned setting. For the
sake of security, Cold Fusion will by default cause the debugger feature to use a randomly available port. This would be a problem ~
Cold Fusion is behind a firewall and you·re trying to debug it from outside that hrewall, since the firewall will block that random port

One solution is to modify Cold Fusion's Java configuration arguments to specify a fixed debugger server port number(diflerent
from that mentioned earlier). and then modify the hrewall to allow access to this port from your (or any authorized developer's)
machine.

To set a hxed debugger port number, specify the following JVM argument on the Java And JVM page of the ColdFusion Adminis
trator (in ColdFusion Standard or Server deployments) or in j vm . config for ColdFusion Multiserver deployments:

-DDEBUGGER_SERVER_P0RT=portNumber

Replace portNumber with the port that you wish to use, and restart Cold Fusion. Be careful when modifying the Java configu
ration arguments. as incorrect values could prevent ColdFusion from starting. Be sure to make a copy of the jvm. config file
before making these changes.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

CoNFIGURJNG CoLnFusmN AND TH.E DEBUGGER E75

The next setting on the Debugger Settings page is Maximum Simultaneous Debugging Sessions,
which need not be changed unless you expect to have more than the default number of developers
(five) debugging against a single shared server.

I'll explain the Start Debugger Server button at the end of the chapter, in the section "Stopping the
Debugger." For now, just know that you don't need to click the button to start debugging. The first
debugging request will cause debugging to start on the server. (And note that when debugging has
started, the button will change to Stop Debugger, and a Restart Debugger button will appear next
to it.)

Configuring RDS to Secure the Server

Once the Allow Debugging option is enabled, which permits a server to be debugged, the next
significant step is controlling who may debug code on the server. Adobe chose to build debug
ger security on top of the long-standing Remote Developer Services (RDS) feature, to provide
secured access for developers using editors (including Dreamweaver and ColdFusion Builder) try
ing to access information from the ColdFusion server.

For a ColdFusion server to be debugged, the developer enabling debugging from ColdFusion
Builder will need to provide credentials as indicated in the RDS settings of the server. The section
"Configuring ColdFusion Builder" later in this chapter explains how to use these RDS credentials
in ColdFusion Builder.

The ColdFusion server administrator controls whether RDS is enabled (it can be disabled at
installation) and also chooses the credentials (password, if any) that will be required by developers,
as configured on the Administrator's Secmity > RDS page.

Note that ColdFusion Enterprise and Developer editions (since ColdFusion 8) add a powerful
RDS feature, allowing multiple user accounts, so that different developers can each be given their
own RDS username/password pair authorizing them to access the server from development tools
such as ColdFusion Builder and the debugger. RDS security is discussed further in Chapter 56,
"Security in Shared and Hosted Environments," in Adobe ColdFmion 9 Web Application Construction
Kit, Volume 3: Advanced Application Development.

Increase Maximum Request Timeouts

While debuggers are powerful in enabling you to stop on a line of code and inspect variables and so
on, there is a downside. ColdFusion is often configured to forcefully timeout requests that take too
long, as configured in the Administrator's Server Settings> Settings page. If the Timeout Requests
after (seconds) option is checked, then ColdFusion will try to terminate requests lasting longer
than the specified time limit. When debugging code on a server using the step debugger, you will
need to either increase the time liinit or disable this feature entirely (in which case requests are free
to run as long as they need to, which may be acceptable on a developer workstation).

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E76 CHAPTER 45 USING THE DEBUGGER

Special Considerations for Multiserver Deployment

A final discussion regarding ColdFusion server configuration for the debugger revolves around a
difference between installing ColdFusion in the stand-alone (Server) mode versus the Multiserver
(or multi-instance) or J2EE deployment mode. In the former, when you enable the aforemen
tioned setting, Allow Line Debugging, ColdFusion will automatically modify the underlying jvm.
config file used to control the server, placing there the appropriate information needed to enable
debugging.

In the Multiserver or J2EE modes, however, you must manually place the following information
into the jvm.config file on the existing java .args line provided there:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=#portNum#

Here, #portnum# is the port number entered in the Debugger Port setting, discussed earlier. T hat
information (and the rest of the java.args line) must be entered on a single line, without line
breaks.

WARNING
Be sure to make a copy of the j vm .config file before editing it. Any mistake in the file could prevent Cold Fusion restarting.

Yet another concern when you run the Multiserver edition of ColdFusion is that by default all the
instances share a single jvm.config file. This is a problem when using the debugger, as only one
instance at a time can use the debugger port specified above. You may find that at times when an
instance goes down, the lock on the debugger port remains tied to one or the other instances. In
this case, you should explore giving each instance its own jvm .config file, with its own designation of
the debugger port. This can be done most easily by starting a ColdFusion instance from the com
mand line, which may be especiaJly suitable in a development environment. You can also configure
an instance that is started as a Microsoft Windows service so that different instances use different
configuration files. Each approach is discussed in the Adobe technote at http:/ /www.adobe.com/go/

tn 18206.

Upon configuration of ColdFusion, you're ready to proceed to configuring ColdFusion Builder.

Configuring Coldfusion Builder
To connect a developer's ColdFusion Builder insta11ation to a ColdFusion server, you need to con
figure a few settings in the ColdFusion Builder environment, including settings to define a proj
ect, define a server connection, configure an RDS connection, and possibly add debug mappings
and debugger settings, and then you need to define a ColdFusion Builder debugging configuration
for ColdFusion.

NOTE
As discussed in Chapter 3, ColdFusion Builder can be installed both in a stand-alone mode and as a plug-in on an existing Eclipse
installation. While debugging can be performed in either. this chapter describes steps and shows screenshots for the stand
alone approach.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

CoNFIGURJNG CoLnFusmN AND TH.E D EBUGGER E77

Define a Coldf usion Builder Project

For you to debug a CFML template, it must exist within a ColdFusion Builder project. If you're
new to Eclipse-based IDEs like ColdFusion Builder, you may not be familiar with or may not yet
have defined a project. Project creation is discussed in C hapter 3, as well as in the ColdFusion
Builder Help section "Managing Projects."

Define a Server Connection

The template needs to exist within a project, and in addition that project must be defined with a
server connection to the ColdFusion server. You may be using projects without having defined a
server connection yet. How to create a server connection is discussed in Chapter 3, as well as in
the ColdFusion Builder Help section "Adding ColdFusion Servers," which discusses how to create
a connection to both local and remote servers.

The server connection is also where you will specify the RDS connection and authentication
information as discussed in the first section of this chapter. For additional help on configuring and
testing an RDS connection, see the ColdFusion Builder Help section "ColdFusion Builder Devel
opment Perspective."

Configure Debug Mappings If Needed

If ColdFusion and ColdFusion Builder are running on the same computer, you can skip the Map
pings setting (Window> Preferences > ColdFusion > Debug Mappings). Otherwise, use this set
ting to map a connection between the path to files as ColdFusion Builder will see them (on your
local machine typically) and the path to the same files as they will be found by the ColdFusion
server. For instance, if you edit and test files locally in C:\i netpub\wwwroot\someapp\ but later
upload them to a remote or central server where you 'd like to debug them, and they're identified
on that server as being in D:\webs\someapp, then these would be the two values you'd specify on
this page for the client and server mappings.

NOTE
Both paths are case-sensitive. There will be no error if the incorrect case is used here, but when you later attempt to debug
against the given remote server, breakpoints simply won't hre.

To add a new set of mappings, first choose the server against which you will be debugging (in the
RDS Server list, populated per the previous steps described above), then click Add Mapping and
follow the instructions to fill in the Eclipse and ColdFusion paths, and click Apply to save the set
tings. See Figure 45.3. (Again, though, if you're running ColdFusion Builder and ColdFusion on
the same computer, you don't need to add a debug mapping.)

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E78 CHAPTER 45 USING THE DEBUGGER

Figure45.3

ColdFusion Builder
Debug Mappings
page.

fill Preferences

1 type rn"''""
Adobe

Ant

Coldfusion-
Debug Mappings

Debug Settings

Editor Profiles
Ext:eruioM

Server Setting:;;

Snippets

St11rtup

Gmcrdl

Hdp

HTML

Inst.all/ Update
Ja\'a
Run/ Debug
Team

Configure Coldf usion Builder Debug Settings

,_

Debug Mappings

M11ppingstdl E:dpse tmd ColdFusion how to refer to and find thc~mc
direCtOfY,

Note: You do not need development mappings if Eclipse and
Cold Fusion ,1rc running on the some computer.

RDS server.

localnDst:

Mappings:

- I

Client S.er\'er t\dd Mappi<l9 I
[ftemo,1e Mappi~ [

~----------~ r.:--7

You specify the next segment of ColdFusion Builder debug settings on the Debug Settings page at
Window > Preferences > ColdFusion > Debug Settings. There are four settings configurable on
the page, with the final two being most important (Figure 45.4).

Figure 45.4
ColdFusion Builder
Debug Settings page.

iii PreferenCP-<:

j type filter text

Adobe

Ant
ColdFusion

Debu g Mappings
Debug Settings:

f.ditor Profiles

txl:en:>ions

Sc,vcr Settings

Snippds

Stanup
General
Help
HTML

Install/ Update

Java

Configu re your environment for dcbu99in9 -with ColdFm ion ~Cf'o•cr.

The home page URL~ uted in the Debug Output Buffa.r ;;_5 the lo-cation to go to when you
press t he home button. Th.ef1le extensions specrfy the fyp-e of page where you can set
breakpoints.

Home p.age URL!

Valid ed:ension!.! cfm, cfml, d e

Debugger scopes.:
EJ appl:ication

El caller

~ arguments

IE] cy;

~ cookie l!J form

~ fuoction_variables ~ reqtJe:sl

~ se;sion

~ varidbb

~ Brea le on a CFML runtime: exception

lL] thirtag

le] attributes

E}client

11:]flash

lc]server

12:J url

El l og an exception to t he Eclipse &ror Log in.stead of shO'Mng a warning diollo-g

First, you can specify (if desired) a home page URL, which will be used to point to the page that
appears in the Browser pane of the Debug Output Buffer of the debugger (a feature discussed
later) when you click the Home button there (not something you'll likely do that often). Also, you
can modify the extensions of the types of files that you want to debug.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

CoNFIGURJNG CoLnFusmN AND TH.E DEBUGGER E79

More important for most is the Debugger Scopes setting, where you can specify which variable
scopes you want the debugger to display when you're displaying variables (discussed later). Though
it's tempting to select many scopes to see all possible information within the debugger, each will
add more overhead to (and slow execution of) the debugger.

TIP
Here·s an important tip: you can always view any variable in any scope using the Add Watch Expression feature. discussed later.

The fourth setting on this page is Break on a CFML Runtime Exception. With this feature
enabled, the debugger will intercept an error occurring in any template within a project you are
actively debugging (see the next section, "Manage Debug Configurations"). The error message
will appear in an alert window, and the debugger will stop at the line that caused the error. This
is a powerful feature since it precludes your needing to anticipate where code in a program might
cause an error.

Remember also that because the debugger can intercept any request, you could be notified about
errors happening to other users executing code in a project you are debugging. Note also that once
the debugger has intercepted a request, it will not intercept another until you have completed step
debugging of the first request.

The final option is Log an Exception to the Eclipse Error Log Instead of Showing a Warning
Dialog. With this option enabled, the Break on Exception feature will not display the pop-up
message, although it wilJ still intercept the request triggering the error. Instead, the error will be
logged to the Eclipse Error Log (located in the . metadata\ . log file in your Eclipse workspace).

Manage Debug Configurations

The final step in being able to debug ColdFusion code is to create a new ColdFusion Builder debug
ging configuration for ColdFusiou, which simply indicates for a given project the ColdFusion server
to which you want to connect (as defined in the "Define a Server Connection" section earlier in this
chapter). In ColdFusion Builder, choose the menu command Run > Debug Configurations, which
opens a window for creating, managing, and running debugging configurations (Figure 45.5).

Figure45.5
ColdFusion Builder
Debug Configurations
page.

Debug Configurations

Creatol manago, and run configurations:

',..c['~ ~~X~I _IEl_::,O~'- ~ ----, 1 ConfigurE: launch setting~ f rom ttus: dialog:

I
(type: f ilter text [:- - P,~s the 'New' button to create a configuration of the seletted type,

II AlRApptication I@ - Press the 'Duplfc.ate' button to copy the selected configuration.
~ i~ "·t '~iii\~i~ ·App~~~tj~~1
·~ J~~ii Appld: · · JC - Pres.s the 'Delete' button to remove the selected configuration.

[Li Jov4 Applicd ion
Jo JUni:t
~ Remote Ja,.,a Application

]{, - Prei:s the 'Filter' button to configure filt ering option~

- EdH or v iew an exirling configuration by teled.ing it.

Configure launch perspective 5cltings from the Perspectfve5 preference
page.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E80 CHAPTER 45 USING THE DEBUGGER

Here you could define debug configurations for different ColdFusion applications and projects.
To create a new ColdFusion configuration, double-click the ColdFusion Application option, or
single-click the ColdFusion Application option and, as directed on the screen, click the New but
ton. The icon to click is depicted in the instructions shown on the screen as in Figure 45.5.

This step creates a new configuration, as shown in Figure 45.6.

Figure45.6
Adding a new
ColdFusion debug
configuration.

1 • Ocbu9 C.onfi9uration-s

Crnate, manage, a nd run configurations

Launch the debugger for CofdFusion applications

IJIITil XIIElll> ~
r;:::::========:::;-11 Name: 1 typd;~cdoct]

II AIR Application

~ CotdFusion Application

~ corchu l-hpmc
c , loca!hos:t

CJ New_-configuration
~ J,v.,Applet

Cu Jaw Application
Ju JUnit
~ RemoteJa..,,a Application

Project Dclaib

Project j=tow=,= ___ = = .. == = = =.= ... = = = = = .. = = .. = = = ... = =_·· .. = ... !~3
Server: localhost bitv~

Here you can specify a name for the debugging configuration, which can be anything you like,
such as ows, as I have used here since I created an ows project for which I'll want to perform debug
ging. The name is simply a designation you'll use later when launching a debugging session.

Then select the project that you want to debug, using the Project drop-down list of options. These
are projects that you have created previously, as discussed briefly earlier, in the section "De.fine a
ColdFusion Builder Project." The Server field will be populated automatically with the name of
whatever server con.figuration you defined for the project.

NOTE
If you can't select any project in this New Configuration page, thafs an indication that you"ve already created a debug configura
tion for that project. You cannot create another debug configuration for the same project.

Having selected a project (and server) name, you could click Debug to cause ColdFusion Builder
to attempt to start a ColdFusion debugging session for the selected project or server, but let's leave
that for the next section. For now, just click Apply and then Close to save these settings.

Okay- that really was a lot of introduction to get to debugging. You may be wondering why the

process is so complicated, but there simply are a lot of moving parts. Again, most of the steps to
this point are one-time configuration settings. Once set, you'll never configure them again.

Exploring the Debugger
We're now finally ready to debug a CFML page (.cfm or .cfc file). In this section we'll learn how
to set breakpoints (places where control should stop while debugging), start a debugging session,
step through code, and observe (or change) variables, among other things.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: DEBUGGER E81

To recap, for a CFML page to be debugged, three things are necessary (each discussed previously):

■ The ColdFusion server on which the code is running must be configured to permit
debugging.

■ A developer must have ColdFusion Builder open with the debugger settings configured:
a project created with server, RDS, and debugger configuration created for the server
against which debugging will take place.

■ The debug configuration for that project and server must be started (typically with a
breakpoint set for the file in question, though Break on a CFML Runtime Exception
can stop on a line even without a breakpoint being set.)

Switching to the Debugging Perspective

When you initially open ColdFusion Builder, you may notice that the top-right corner shows an
icon labeled "ColdFusion." This icon represents what ColdFusion Builder calls a perspective. A
perspective defines a preconfigured layout of the screen, showing tabs and window panes that are
appropriate for a given kind of development work.

In our case, we want to switch to what ColdFusion Builder calls the ColdFusion Debugging per
spective. You can switch perspectives in a number of ways, including by choosing Window > Open
Perspective> Other, or by clicking the Open Perspective icon shown to the left of the current per
spective name in the top-right corner of the screen or by clicking the double-arrow icon to the right
of that (if you've already opened another perspective). There are also some simations in which the
debug perspective will open automatically, such as when the Break on Exception feature discussed
previously is used.

NOTE
You may hnd that your perspective names don't appear in the top right of ColdFusion Builder, but instead appear in the top left.
under the menu. If you want to switch the location between these choices, right-click the perspective name and choose Dock On
and then select Top Left or Top Right.

You'll notice that the interface changes (Figure 45.7) and you now see panes that are related to
doing debugging. I'll explain these panes and their use in the remainder of this chapter.

Figure45.7
The ColdFusion
Builder Debug
perspective.

... - -- -
Filo-Ftla~(~~ ltllft ~~

n · 0) '.i L!! '> · O•'l. · ~ - \' · i . ,,. > • •
QJ(j)._f~~]~ Codvoon

I

C ~~ t:f I e ~ ,p ... 0~10-~ r.~-~'il~►--•-•~I -~-1 ·-v-~_a_., lrillllcs t: ~Muj0\llp1Al 11fhr ~

'111 UNNII·~ I
.. ... d
(ii-....

e) Imm.<'<
§) ~ Wfl&.(flfl

U d:Lh(l'r&.nqt ftip 5'rlll:I.J.Q.1 h l.Juc/113>

Lt
u .::,:,,~J.-c-i, i:~r.•~n1-- """••·ua -,

•!◄■ (eelt l•O-tln«11•.,.%1.,ecerl~I -'""' ••N-rtc=,t,,.d.•=toi-!O)►
~:) <c.t~et Ul&.,l)g11:v • U.llu.l.1.",tn..lalltlltl,.etoelDI>
a ~,;;t'elH . .>"

-1 <c:rn•~ rai.-.o.iit,v - t11-.11.tr1i ... n>

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E82 CHAPTER 45 USING THE DEBUGGER

Opening a File

When you switch to the Debug perspective, the ColdFusion Builder Navigator remains displayed
on the screen, so if you want to debug a page, you need to have opened the page from a project
(again, you can debug only files in projects). Drill down in the project directory tree to find the file
and double-click to open it. T he file will appear in an editor like that shown in Figure 45.7.

Notice that Figure 45.7 shows numbers next to each line. These line numbers are very helpful,
especially for debugging. To enable the display of line numbers, you can choose Window> Prefer
ences > General > Editors > Text Editors and select the option Show Line Numbers, or right-click
in the gutter (where the numbers are shown in the figure) and choose Show Line Numbers.

Setting a Breakpoint
With a file open, you can identify a line of code on which you want the debugger to stop when
it reaches that line during execution of the request. This is called setting a breakpoint. You can
right-click in the gutter, that area to the left of the line (where the line number appears, or the
gray area left of that) and choose Toggle Breakpoint. You can also set a breakpoint by using the
key combination Ctrl+Shift+B or by choosing using Run> Toggle Breakpoint. Figure 45.7 shows
that I had already set a breakpoint on line 14.

When you do that, a blue dot will appear to the left of the line (and line number), depicting that
the breakpoint has been set. Note that it only makes sense to set a breakpoint on a line with
CFML (tags or expressions), though ColdFusion Builder won't stop you from trying.

The breakpoint(s) you set will also be depicted in the breakpoints tab (click the tab shown at the
top right of Figure 45.7), where they are displayed with their filename and line number.

Note that breakpoints remain enabled across editing sessions. In other words, if you close Cold
Fusion Builder and reopen it, the breakpoints you set previously will remain enabled. That said,
breakpoints are specific to your editor, so if another developer opens the file, they will not see
breakpoints you have set.

This may lead to a question: If breakpoints remain enabled across editing sessions, does that mean
that a request will always be intercepted once a breakpoint is set? Not quite. Setting a breakpoint
is the first step. The far more important step is to start a debugging session.

Starting a Debugging Session
Even with breakpoints set, the debugger doesn't do anything until you begin a debugging session.
To begin a session, open a file within a project and choose Run > Debug or press the Fl 1 keyboard
shortcut. This will cause ColdFusion Builder to start a debugging session for the project associ
ated with the file that's open.

There are still other ways to start debugging: Choose Run > Debug As > ColdFusion Application,
or click the bug icon just above the file Navigator, or right-click in the editor and choose Debug As>
ColdFusion Application.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: D EBUGGER E83

Technically, you don't need to open the Debug perspective before using any of the options to start
a debugging session. If the perspective isn't open, ColdFusion Builder will prompt you to confirm
the perspective switch, asking if you want to switch to the debugging perspective, with a Remem
ber My Decision option for future debugging sessions.

Assuming that all is configured properly, this should initiate a debugging session between your
editor and the ColdFusion server.

WARNING
If you do not have your cursor focus within the editor of a currently opened file, then using any of the options mentioned here to
start the debugger will restart whatever was the last-executed debugger configuration. This could be very confusing as it may not
be the debug configuration for the files you intend to debug. Be sure to note the debug configuration that is started. as shown in
the debugging window discussed next in the section "Understanding the Debug Status Window."

If you're debugging a local server, it will also cause ColdFusion Builder to open your default
browser to start executing the URL for the file you selected, again assuming that you selected an
open file and the cursor focus is within that file at the time you started the debugger.

Even if a browser window isn't opened automatically, you can certainly still open a browser:
any browser, whether an external one or one of the available internal browser tabs within Cold
Fusion Builder. This topic is discussed further in the upcoming section, "Browsing a Page to Be

Debugged."

Understanding the Debug Status Window

After a debugging session is started, the debugger is now ready for you (or someone) to execute a
request to be intercepted and debugged.

Figure 45.8 shows the kind of information that might be displayed in the debug window, which
shows the debugger ready to accept requests for files in the selected debugging configuration. (I've
selected to start my debugging configuration named ows. T echnically, the value shown on the first
line, with the CF icon to its left, is the name of the selected debugging configuration, and the next
line below it is the name of the server used for the project in that configuration.)

Figure 45.8
A successfully started
ColdFusion Builder
debugging session.

rch Project Run Window

13 ' ~· Q • Q,, ·

~ ~ ColdFusion

c; ~ I E1 1o"" CEJ

Help

.,.;; . . {(_ · \YI • ~<:= • .;. .

t,- Debug 1:3 Sic 1► :n. Iii •. , I :'.':<· .I': ~ I~"' C El (IC)- Variabf~

£.. ows [C-oldFusion Application]
¥t loc-,.lhost biws

►<a,. Coldfu5ion T cmplalc

<

ID,getfilms.dm ~L -c"" h1m1 IS CM

,j ~ .re ro l~I tr• t 4 ... r.1 ••- AB •b -

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E84 CHAPTER 45 USING THE DEBUGGER

The approach just described starts a debugging session for the specific file that was open. You can
also start a debugging session for any existing debugging configuration through a couple of other
approaches in ColdFusion Builder.

First, you can choose Run > Debug Configuration, which will open the same interface that we saw
in Figure 45.4, where we defined debug configurations. You can select a configuration and click
the Debug button in the lower-right corner.

Second, you can click the icon (just above the file navigator) that looks like a bug. If you've not
previously used any of your debugging configurations, you'll be presented with the same dialog
box as shown earlier to select one. And when you've selected more than one debugging session,
you will be able to select one of them quickly by clicking the down arrow icon just to the left of
the bug icon, which will display a list of previously selected debugging configurations. Choosing
one will start that debugging configuration. Note that the menu also offers a Debug option, which
also opens the interface shown in Figure 45.4.

When Starting a Debug Session Fails

Your attempt to start a debugging session can fail for a number of reasons. What are some of the
things that could go wrong?

■ ColdFusion isn't started: You'll get a pop-up saying "Connection timed out: connect"
followed by another starting with "Unable to connect to the RDS server" and continu
ing with another message, "Connection timed out: connect." Start the ColdFusion
server and try again.

■ RDS wasn't enabled in the ColdFusion server: You'll get a pop-up starting with
"Error Executing RDS command. Status code: 404" and then another reporting
"Unable to connect to the RDS server." Again, the ColdFusion Builder debugger
requires an RDS connection, so the server being debugged must have RDS enabled.
You can learn how to enable it at http://www.adobe.com/go/tn_17276. After making the
change, restart the server and try again.

■ The RDS authentication information provided was invalid: You'll get a pop-up
starting with "Unable to connect to the RDS server" and continuing with the error
message "Unable to authenticate using the current username and password informa
tion." Correct the RDS connection information and try again. The RDS connection
information can be edited by modifying the server definition, which you can do by
right-clicking the server in the Servers view (Window > Show View > Servers). Be sure
to select the server defined to be used for the project whose file you're trying to debug.

■ Allow Line Debugging wasn't enabled in the ColdFusion Administrator: You'll
get a pop-up starting with "Unable to connect to the RDS server" and continuing with
the error message "Error Executing RDS command. Status code: 404." Return to the
ColdFusion Administrator, as discussed in the section "Enable Debugger Settings," and
ensure that Allow Line Debugging is checked. You must restart ColdFusion for this
change to take effect. Try starting the debug session again.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: D EBUGGER E85

■ The debugger port is not opened on the server: You'll get a pop-up starting with
"Unable to connect to the RDS server" and continuing with the message "Connec
tion timed out: connect." You must open a hole in your firewall exposing the debugger
port for access from the machine on which you're running the debugger, but see the
important discussion of how ColdFusion uses a random debugger port and bow you can
resolve this in the earlier section, "Enable Debugger Settings." Then try starting the
debug session again.

Browsing a Page to Be Debugged
With a debugging session enabled, it's now finally time to run your page to experience debug
ging. This step can actually be as confusing for some developers as any of the configuration fea
tures discussed to this point. While most debuggers may have some configuration that must be
performed, as discussed earlier, with most debuggers the next step is simply to run the desired
program in the IDE or in some sort of special debugging window. That's not necessary with t he
ColdFusion Builder debugger.

Instead, you simply run the CFML page request just as you normally would, whether from a
browser, or via a Flex or Ajax client, or as a Web service call from some other environment, and so
on. There's no special debugging window in which you must run your request. (Internal browsers
provided by ColdFusion Builder are available; you don't have to use those, though you can.)

TIP
Since the debugger intercepts any request for a CFML page, it can even intercept some requests that have no browser or client at
all, such as requests if you debugged the onsessionEnd method of Application .cfc (which would be executed when a
session ended), or requests in a ColdFusion event gateway like the 0irectoryWatcher (which would be executed when there was
a change in the directory it was observing).

If you have a ColdFusion Builder debugging session enabled against a server, with a breakpoint set
in a file, then when that CFML code is executed, whether by you or anyone else, the debugger will
stop on that line of code.

You may be surprised that the debugger intercepts any request for a CFML page, regardless of
whether you request it or someone else does. This means that in an environment with multiple
users making requests against a given server that you're debugging, you could intercept someone
else's request. That could be either desirable or unexpected. Just be aware.

What You, the Developer, Will See

Assume that you or someone else has issued a request and it's been intercepted by the debugger at
a desired breakpoint; Figure 45.9 shows how the ColdFusion Builder environment will reflect that
you're stopped at that breakpoint.

First, notice that the Debug window at the top now reflects more information than we saw in Figure
45.8. It shows the complete path to the file being debugged and the line number at which execution
has stopped. This complete path can help if you ever wonder what file you're viewing or debugging.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E86 CHAPTER 45 USING THE DEBUGGER

Figure 45.9
Execution stopped at a
breakpoint.

dm

a_ OM(Coldr1,1~Applic~]

_a!l5oc•lllostbwrr,,s
r/1 Coklt..,,,11111 hmpul,r

ii O\Cald"1..1ul'.>ll?__,IICl'l\""""4\\'l'-ffllm._t1m:1:I

U -:etob)C~ t"O.llPOllC!l,lt ... t1.~• a.us.e~•t1J.Jiu•>

t4•rct.it \~O.,f!N,d(•tn· l ,Aeiui.rfl>•) ~nd 1:II.Hn-.r1~(tn•1 .4oi.or?D)>
l!i ,rer,~t. r t l Jl."JQu~ry - r, l !L"J. 1,.,crt 1111."I IUl"l .11.er.a1'TO) >
11 <"1.hhe>
n <1!;r.s111, u1-0in,cy - n1&a.u.-cru-o>
~o </ctJ.t>

Note also that in this case we see other lines there, which reflect what some may call the stack
trace-or how the code we're stopped on was called by other code. For instance, if we were
stopped in a CFC, include file, or custom tag, it would show the file (and line number) of the code
that called this file.

Second, in the code window, you can see that where Figure 45.7 had showed only a blue dot next
to the line on which a breakpoint had been set, now we see also a blue arrow overlaid atop it. (This
may be too small to observe in the screenshot.) The arrow is a current instruction pointer, which
reflects where the debugger has stopped execution. It shows the line that is about to execute. We'll
learn about stepping through that and other code shortly.

What if the breakpoint doesn't fire? You may find that when the request is executed, the break
point does not fire. The first step is to ensure that aH previous configurations are correct (you've
opened a file in a project and properly defined a server and RDS server for that project) and that
you've set a breakpoint and started a debug session for the project in which the desired file is
located.

Even if all these settings are correct, occasionally the debugger doesn't pick up the breakpoint.
You may even see an icon where the blue dot should have appeared (indicating that a breakpoint
had been set on a line) showing instead a small question mark over the dot. In either case, try mak
ing some change to the file (while in the editor) and save it. You may even want to terminate and
restart the debug session, as discussed later, in the section "Stopping the Debugger."

What the User Sees

While we sit here looking at the debugger, observing the fact that the debugger has intercepted
the request, allowing us to look at the information above (and more to be discussed soon), you
may- and should- wonder what things look like to the user making the request. If it's a regular
browser user, what they'll see will appear as if their request is hung, as if the server is not respond
ing, and in fact it's not. We've held up the request's processing so there is not yet a response for the
user to see.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: D EBUGGER E87

Just as when a user's request is waiting for any response from the server, they will see various indica
tors that they are waiting, which will vary depending on the browser being used. See Figure 45.10 for
an example in Firefox, where I've highlighted with arrows the three ways that it shows that a page is
waiting to complete loading. This is the page that triggered the debugging session in Figure 45.7.

Figure 45.10 9' Mozillo firctox c:a • .. '"' -·-

The user waits for
page execution to
finish.

f !Je ;ti.it ~~ Hiftory

g-: X
, ~. Loa<hg ...

"'

/
Waiting for loc~hoq: ..•

§ook:marlcs I ool5 !;!Elp

~ l http-J /localhost:8500/ow;/"5/ getfilm.ufm + • I Iott . _,,. Pl
I ~ I -

\
.I

You may wonder, if the page had started to generate output before the breakpoint, whether that
output would at least be sent to the browser. It is not. As with a normal ColdFusion request, the
page output is buffered internally and sent only when the page completes (unless a CFFLUSH causes
it to be sent sooner or an internal buffer size is reached). If you want to see what partial page out
put has been created in the output buffer, such a feature is available in the debugger, discussed
later in this chapter, in the section "Observing the Debug Output Buffer."

Of course, this discussion has assumed we were referring to a normal browser request calling the
page. If the page had been an Ajax or Flex client request, those two would show the request wait
ing, typically using some sort of prompt to the user (which might flash by in a split second under
normal circumstances).

Beware Page Timeouts

It's possible that you could leave the browser waiting so long for a response that it would consider
the page abandoned and could show a message indicating that it stopped waiting.

We mentioned previously how ColdFusion itself could report that the request exceeded a con
figured timeout. You would receive a pop-up message in the debugger reporting, "coldfusion.
runtime.RequestTimedOutException: The request has exceeded the allowable time limit." In

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E88 CHAPTER 45 USING THE DEBUGGER

this case, you should configure ColdFusion to allow CFML pages to run longer than normal, by
adjusting the ColdFusion Administrator's Timeout Requests feature, discussed earlier in the sec
tion "Increase Maximum Request Timeouts."

If for some reason you can't get the Administrator setting changed, there's yet another option to
prevent timeouts, at least on a page-by-page basis. When the normal execution of a page may be
legitimately expected to exceed the server timeout, you can use the CFSETTING tag and its Request
Timeout attribute to specify a number of seconds that the page should be permitted to run before
timing out.

Stepping Through Code
Now let's continue with the use of the debugger.

We've stopped the debugger on the line of code set as a breakpoint. There are many things we can
do at the point, as we'll see in upcoming sections, but often the sole reason for using the debugger
is to observe the flow of execution through the code (and among the files that the code may call
upon). T here are many beneficial reasons to step through the code.

Perhaps you're trying to understand why certain code is (or is not) being executed. Or maybe this
is new code that you've been asked to maintain (or debug), and you want to use the debugger to
become more familiar with its operation (versus statically reading the source code by hand).

A powerful feature of the debugger is that it opens files that are called upon as you step into lines
that point to other files (such as includes or CFC methods). Thus it's also an excellent tool for
learning where your code is going and what files are being used. Recall from Figure 45.8 that it
shows you the full path to the file being debugged.

Finally, you may be new to ColdFusion in general, and the debugger is an excellent tool to help
you become familiar with how CFML works.

You can step through the code on a line-by-line basis, or you can run until a next breakpoint is
reached. And if you've stepped into some other file, you can have the debugger complete execution
of code in that file and stop at the next line in the calling file after the line which called the other
file.

Stepping Line by Line: Step Over, Step Into

The most common situation is that you want to have the debugger just proceed to execute the next
line in the flow of execution. Here you have two choices.

First, you can choose to step over the line, which means simply that you want to execute the code
and proceed to the next line (in the current file) that would have followed it (unless there are no
more lines to execute, in which case the request will complete). This can be accomplished by
choosing Run> Step Over, pressing the F6 key, or click the Step Over icon listed among the icons
atop the debug window.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: DEBUGGER E89

Your second option is to step into the next line of code (choose Run > Step Into, or press the F5
key, or click the Step Into icon). This option makes sense if the line of code about to be executed
would call another file (such as a CFINCLUDE, custom tag call, or CFC method invocation) and you
want to use the debugger to open that file and stop on the first line of CFML code in the newly
opened file.

Let's return to our code example and follow as it steps into the call to a CFC method.

NOTE
If the tag you're interested in stepping into (which would open a hie) happens to have an opening and closing tag (such as a
CF INVOKE) with intervening CFML tags within it. the Step Into process won't happen until you reach the closing tag.

Notice that you don't need to tell the debugger where the file is. That's one of the very powerful
features of the debugger: it figures out the file that ColdFusion would use. This is a great feature
when you have any doubt about what file is being opened. (The file may not always be obvious to
you due to ColdFusion mappings and other mechanisms by which ColdFusion may find and open
a named file; if the file can't be found, you may need to take an extra step, discussed at the end of
this section.)

TIP
Here·s a bonus ColdFusion Builder feature. You don't need to use the debugger to have it open the hie associated with a tag or
function that would point to another file. Cold Fusion Builder has a handy feature that lets you hold down the Ctrl key(Windows) or
Mac key (Macs) while using the mouse to hover over such a filename. An underline will appear, indicating that the mouse is point
ing to a file, and clicking will open that file. This feature works with both CFML and HTML.

What if you don't want to follow the flow of execution into the file that would be opened (by the
line of code about to be executed)? You don't have to open it. You can instead use the Step Over
option, and the code in the current file will be executed (just as during normal execution of the
page) and the current instruction pointer will be set at the next line in this page (unless there are
no more lines to execute, in which case the process will complete, or if you've stepped into a file,
the debugger will return to the calling file).

If you do choose to use Step Into on a tag that opens a new file, note that once you're inside that
new file, you have the same options as discussed earlier, so you can use Step Over and Step Into, as
well as a new option, Step Return, discussed next.

CAUTION
Be careful not to uses Step Into when you don·t need to (don't use it on tags, functions, or expressions that would not otherwise
have any reason to open a new file). For one thing, i1 can cause the request to take longer than it would with a Step Over.

More important, on some tags and functions. using Step Into will actually try to open an underlying file unexpectedly. Some
CFML tags, such as CFDUMP, CFSAVEC0NENT, and a few more, as well as some functions, such aswritedump(), are actually
executed as CFML pages by ColdFusion. ColdFusion Builder will try to open the respective file, and you'll get an error in ColdFusion
Builder reporting ·source not found" and offering an Edit Source Lookup Path button. But the path used, such as E: \ cf 9 _final\
cfusion\wwwroot\WEB -INF\ cftags\dump .cf m, does not really exist on your ColdFusion server. The path corresponds
to a location where the file existed when ColdFusion itself was compiled.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E90 CHAPTER 45 USING THE DEBUGGER

When considering the idea of stepping into files, it's important to remember that for the debugger
to locate a file, the debugger must be able to find the file, and it expects to find it in the project.

This creates a dilemma that often stumps new debugger users: What if the file being opened is not
defined in the project (which perhaps is pointing to a single Web site's Web root)? What if the file
is instead in some directory that's shared among multiple Web sites? An example may be a CFC or
custom tag stored either in the default ColdFusion custom tags directory or in a directory pointed
to by a custom tag mapping in the ColdFusion Administrator. While ColdFusion can certainly
find that file when it needs to, how can the debugger be told?

The magic is in the definition of the project (and for remote servers, the debug mappings men
tioned previously). T he solution is to add a link folder definition in the project's properties. This
can be done in the project's properties (right-click a project name and choose Properties); then in
the list of options, select ColdFusion Project and under Additional Resource, select Add to point
to the location. For more information, see the ColdFusion help topic "Link to resources outside
the workspace."

Step Return and Resume

If you do step into a new file, and you decide you no longer want to step line by line through the
code, you don't need to laboriously make your way through the remaining lines of code. That's
what Step Return is for (Run > Step Return, or F7, or the appropriate icon). That option com
pletes execution of the file that's been stepped into (unless there's another breakpoint later in the
file) and returns control to the line of code that follows whatever tag or function called the file. All
the remaining code in the file is executed, of course. You just don't step through it.

Similarly, if at any point while debugging a request you decide that you no longer want to step
through the code (whether you've stepped into a file or not), you can have the debugger proceed
to execute the entire remainder of the request using Resume (Run> Resume, or FS, or using the
appropriate icon). Unless there's another breakpoint in the flow of execution, the debugger wiU
finish and the completed page will be shown to the browser (or whatever client made the request
for the CFML page).

The Terminate feature is discussed in the last section of this chapter, on stopping the debugger.

Observing Variables and Expressions
For some developers, just being able to have a granular, line-by-line depiction of the flow of execu
tion through their pages is miraculous enough. But there's more. While you're at a breakpoint,
you can also observe the value of any variable, in any of ColdFusion's scopes. This includes all the
usual scopes (FORM, URL, SESSION, REQUEST, and so on), as well as things like the ARGUMENTS scope
when in a function, the THIS and LOCAL scope as created by a CFC, and so on.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: DEBUGGER E91

The Variables Pane

The first place to look is the Variables pane, which appears to the left of the Breakpoints pane
as shown in Figure 45.9. If you select it, you can traverse the tree of available scopes, expanding
them to see the name and value of any variables in the selected scope. See Figure 45.11, where
I've selected the VARIABLES scope. Since this code just created a CFC instance that was stored by
default in the VARIABLES scope (as films), , I've expanded that variable, and you can see the various
internal variables that ColdFusion tracks (as structure keys) for a CFC instance, such as the actual
path where it was found.

Figure 45.11
Display of VARIABLES
scope.

Name

.111 f> vo:.-riable:)

,11 ~ FlLMS

6 EXTENDS

6 NAME

Vak.re

Coldfu)ion Scope

WEB·INF.dtags.com po,,ent

u;s.1m.ows.£1.5.f ilmi
J

6 PAll-1 C:\\ColdFu.s.ion9\\wwwroot\\ows\\45\\films.cfc --

_____________________ J '

c : \ ColaFUs1on9\WW',1roo c\ o-ws\,gs\:C11:fill: . er e

The depiction of variables in this pane is of course not limited to the simple variable values shown
above. If the code had executed a query, we could expand the query to see all its related variables
(recordcount, column list, etc., and even each row and column in the result set). If we stepped
through the next line of code, which will call the CFC that returns a query, we can view the query
result set. Figure 45.12 shows the query result set expanded, showing the first row and its two col
umn values (and the column names are shown in the columns variable also displayed for the query).

Here are a couple of tips that could make working with the Variables pane more effective. First, if
the value of the var iable you wish to observe is too long to be displayed in the Value column pro
vided, while you could select the column divider to make it wider, a simpler solution is that if you
select the variable, you'll notice (as shown in Figure 45.12) that the selected value is also displayed
in a Details window at the bottom of the Variables pane. This can be more easily scrolled to view
the full value.

Figure 45.12
Display of a query.

l"l' Y•r,ables ~ j Q Debug Output Buffer I e., Breakpoints I~ Exprmions I
Name Value

o 0 FILMS

, 0 FILMSQUERV

el CACHED false

> el COLUMNS [fllMlD, MOVIITITL.£]

el EXEQJTIONTIME ll
JI '31 ROWS [[1, Being Unbo:11ably Light

• el [1] [l, Being Unb eorably light

6 [1] 1

6 [2] Bei-ng Unbearabl~ Light

' I '"
Being o nnear a.t:>ly L1gnc

re: <>t:8 ?=

I .

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E92 CHAPTER 45 USING THE DEBUGGER

Also, while in the Variables pane, you can scroll up and down in this list to see all the available
variables in the selected scope. But note that you can also use an available Find feature, which can
search through all the scopes to find a variable of a given name. Right-click the variables pane and
choose Find, or left-click on it and use Ctrl-F.

Remember, too, that the list of scopes shown is limited to a default subset shown in the Debug
Settings preferences (or those you chose during setup), as discussed previously in the section of
the same name. Recall from that discussion that you should be careful about adding too many
scopes, as that can slow the execution of the debugger. Another option is that you can instead ask
the debugger to show you some specific variable using the Expressions pane, discussed next.

The Expressions Pane

You may want to observe a variable value to watch how it changes over lines of code as you step
through it, or perhaps over multiple requests for the page. While you could traverse the Vari
ables pane to find and display your desired variable each time, you could instead use the available
Expressions pane. This has the benefit that you choose to name what variable you want to watch
(including one in a scope that is not being displayed in the Variables pane because of Debug Set
tings preferences).

To add a new expression to the pane, right-click it, choose Add Watch Expression, and then pro
vide the name of the variable. You don't need to surround the variable in pound signs (though it's
okay if you do). The variables you name will be displayed in the Expressions pane (in the order in
which you add any). When you're stopped at a breakpoint, its value will be shown- assuming the
variable is defined at that point in the code. If it's not, the variable will be shown in red. (If you
ever find that a variable which should be defined is not displaying, right-click it and choose Reeval
uate Watch Expression. You can also right-click an expression and choose Edit Watch Expression.)

Note that you're not limited to naming variables with simple values. You can even name an entire
scope and all its values will be displayed. You can also create a new Watch Expression by right
clicking on a variable in the Variables pane and choosing Watch.

Another benefit of the Expressions pane is that, like breakpoints, the items you create here remain
across debugging sessions and editor restarts. And like the variables pane, you can use the Find
command to search among them.

Changing Variables on the Fly

Here's a feature that will amaze some readers. Did you know that you can change the value of a
variable on the fly, while the program is being debugged? Yes, you can. While at a breakpoint, you
can right-click on a variable name in either the Variables or Expressions pane and choose Change
Value. It's really that simple. The value will be changed for the remainder of the execution of the
request (or until you or some other code changes it again).

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: D EBUGGER E93

Observing the Debug Output Buffer
Finally, the last feature to discuss is the Debug Output Buffer pane. I mentioned it previously
as a way that you can view the generated output of the CFML code (whether you're generating
HTML, XML, JSON, or whatever else you may be outputting as the page response).

The Debug Output Buffer pane is what enables that processing. The pane appears to the right
of the Variables pane in the top right of the Debugging perspective. Within that pane, select the
Server Output Buffer tab (I'll discuss the Browser tab in a moment).

Server Output Buffer Tab

The Debug Output Buffer tab consists of two panes (Figure 45.13).

Figure 45.13
Server output buffer
pane.

()()=Variables] Q Debug Output Butter i3 I 0 0 B1eakpoints I o/s' Expres~ons

001201~~ about blank

0 B1owm l :Ji Sma-OulpYI B,ffa- J

-
<ncnD

Orange Whip Studios films

<hea!ldXti'tlc>U:iing E'ilmDcco.CFC</ tit
<body>

<h3>-0range Hhlp SCW:110~ fl!.ID:x:/ h:3>

.
"' cu

C El

. Q

-

!.

The left pane shows the raw generated browser code (HTML, in this case) that the CFML tem
plate has generated to this point. You could scroll down and see that it's not a complete page, since
the request is in the middle of generating the content. Further testament of that fact is in the right
pane, which shows an attempt to render that HTML in a built-in browser.

WARNING
If you open the Debug Output Bulfer pane after having already started to debug a request. you may not see it displaying any of the
request's output. Try completing and restarting the request to see output presented in this pane.

As you step through the code, you'll be able to observe the building of the page as it might appear
in the real browser. This is just a simple rendering of the HTML in a temporary file created by the
editor. It's not really executing in the context of the URL of the server, so some things (like the
image shown) may not render correctly.

Also, don't be misled by the URL displayed atop the pane. That's not the URL of the page being
debugged (unless you typed a URL there). That address bar is really there for the sake of the other
window in this pane, the Browser tab, discussed next.

And to be clear, the server output buffer is populated regardless of the browser used to launch the
request being debugged (again, it could be launched by a user other than you).

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E94 CHAPTER 45 USING THE DEBUGGER

Browser Tab

I had mentioned previously that to trigger the debugger you could make a request from any browser,
and I'd mentioned that there were some internal browsers available within ColdFusion Builder. This
is one of them. If you wanted to, you could make your page requests using this address bar and the
result will be shown in the Browser tab of this pane, not in the Debug Output Buffer pane. Indeed,
it wouldn't really make sense to use that address bar while you're viewing the result of a page being
debugged.)

It's a real browser. In fact, the URL that's shown (unless you entered one yourself) is the very
value of the Home Page URL that was mentioned briefly in the discussion of Debug Settings,
Figure 45.4. (So that's what that's for!) If you click the home page icon atop that Browser pane,
that URL will be loaded.

That said, I should clarify that some might not care for this browser tab because the window is so
small. But here's a tip: As with all the panes discussed here, you can resize this one and even detach
it so that it floats as a window over top the ColdFusion Builder interface.

Stopping the Debugger
Finally, when you're finished debugging pages, you may wonder how you stop debugging. There
are several ways, each with slightly different purposes.

Terminating Debugging Within the Debugger

First, if you close ColdFusion Builder, that will terminate your debugging session, which means
fortunately that you can't leave it running by mistake (at least not by closing it without remember
ing to stop it).

You can also stop the debugging session while you remain in the editor. There are a few ways.
You can use the Terminate button. That stops the debugging session and lets the request run to
completion. You can also choose Run > Terminate.

You can also right-click in the Debug pane (where the file name and line number of what's being
debugged is shown), and there choose Terminate. That will stop the debug session and leave an
indication in the Debug pane that you had used that debug configuration. That way you could
right-click and choose Relaunch as another way to start a session. You can also right-click and
choose Terminate and Relaunch if, for instance, you made changes in the debug configuration.
Finally, you'll see another option, Terminate and Remove, that will remove the debugging session
from the debug pane.

Forcing Termination from the Server

I mentioned above that closing the editor would terminate any debugging sessions. But what if you
instead mistakenly left the Editor open and a debug session running while you left for lunch- or
for the day? This could be a real problem. Users might run a request for a page you're debugging,

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

EXPLORING TITT: D EBUGGER E95

and at least the first of those would have their request hang wajting for a debugging activity that
might not happen for hours.

Here's where it's important to note that there's one final way to stop debugging that can be done
from the server rather than from the editor. Recall the discussion of the Admin console page for
Debugging & Logging> Debugger Settings. I mentioned the available Start Debugger Server
button, which once debugging begins becomes a Stop Debugger button, and an associated Restart
Debugger Button appears.

This is the situation where you would use those buttons. You could either use Stop Debugger (and
then Start Debugger) or just use Restart Debugger. That will terminate all current debugging
sessions, thus freeing up the requests that were pending waiting for a debugging session to com
plete. Even if you'd used Stop Debugger, the first request for a debugging session from a developer
would restart the debugger server anyway.

Think of the Stop or Restart as like a forced termination of debugging from the server. All devel
opers who were performing debugging will have their debug sessions terminated, so it's a bit brute
force, but they can easily restart them. The good news is that they do need to manually restart
them, so the person who left their editor (and debugger) running when they left will no longer be
the cause for intercepted requests.

NOTE
The Restart option also can be used if, for any reason, ColdFusion Builder crashes during a debugging session. In that case.
on restarting and launching a new debug session. you may get a breakpoint error reporting "Another session has already set a
breakpoint there." Clicking the Restart button should resolve the problem.

If you wonder how to stop all debugging from happening any more on the server, clearly that's
not what the Stop Debugger Server does (since the next request for a debug session will start it
up). Instead, turn off (uncheck) the option on that Admin page for Allow Line Debugging. That
takes effect immediately, and ColdFusion would no longer permit debugging requests against that
server.

Other Features
While we've covered a broad range of features and troubleshooting topics, there are still more fea
tures that cannot be elaborated upon due to space constraints.

For instance, you can copy variables and expressions by right-clicking them in the Variables or
Expressions pane. You can also export and import breakpoints (to share them with other develop
ers) by right-clicking in the Breakpoints pane.

There are also options to temporarily disable one or more breakpoints or to skip all breakpoints
(both via an icon on the Breakpoint pane's tool bar, or via Run > Skip AIJ Breakpoints.)

That said, there are also some features on the Run menu that do not work in ColdFusion Builder
(but instead are remnants of the underlying Eclipse Java debugger), such as method breakpoints,
watchpoints, and step filters.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

E96 CHAPTER 45 USING THE DEBUGGER

Also, when you're done debugging and want to return the display to the more typical develop
ment (rather than debugging) perspective, you can either choose Window > Open Perspective >

Other> ColdFusion or click the icon for the ColdFusion perspective, which again (as discussed
earlier) appears either in the top left or top right of the interface.

Finally, be aware that the ColdFusion 9 manual, Developing CFML Applications, has a section
"Using the ColdFusion Debugger," but there are some differences between what this section dis
cusses and what you'll experience in ColdFusion Builder. This manual was created prior to the
release of ColdFusion Builder and discussed an older plug-in approach to debugging ColdFusion.

It's great to see how in so many ways the Adobe Engineering team has thought ahead to help not
only provide a debugger but one that addresses some common challenges that CFML developers
would face. For many, the biggest challenge of using a debugger is simply remembering that it's
there. I hope this discussion has motivated you to consider using it.

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development (Online Chapters)

